ON THE TWO-DIMENSIONAL MOTION OF A THICK ELLIPTICAL WING UNDER A FREE SURFACE

(O PLOEXO-PARALLEL*NOM DVIZRENII TOLSTOGO
ELLIPTICHESKOGO KRYLA POD
SVOBODNOL POVERKHNOST' IU)

PMM Yol. 26, No.4, 1962, pp. 797-800
N. V. KURDIUMOVA
(Leningrad)
(Received February 2, 1962)

The problem of the steady irrotational motion of a wing under a free surface will be considered in curvilinear coordinates ρ, v, connected by a conformal mapping

$$
\begin{equation*}
z=\omega(\zeta), \quad \zeta=\rho e^{i v} \tag{0.1}
\end{equation*}
$$

of a circular annulus onto the region bounded by the contour of the wing and the x-axis. The circles $\rho=$ const in the ζ-plane correspond to the curves $\rho=$ const in the $z-p l a n e ;$ we let the contour of the wing correspond to the unit circle, and the x-axis to the circle $p=\rho_{2}$. We also require that the point at infinity in the z-plane correspond to a point on the line $v=0$ in the ζ-plane.

1. We assume that the wing moves along the positive x-direction with velocity c. We limit ourselves to the case of small values of the parameter $\lambda=2 \mathrm{gh} / \mathrm{c}^{2}$, $1 . e$. the case of large Froude numbers $[1,2]$.

Since Laplace's equation in the curvilinear coordinates p, v, has the same form as in polar coordinates, the velocity potential can be given in the form of a series

$$
\begin{equation*}
\varphi=\frac{\Gamma}{2 \pi} v+\sum_{m=1}^{\infty}\left(A_{m} p^{m}+A_{-m} p^{-m}\right) \cos m v+\sum_{m=1}^{\infty}\left(B_{m} p^{m}+B_{-m^{p}}{ }^{-m}\right) \sin m v \tag{1.1}
\end{equation*}
$$

Herer is the circulation around the wing, taken positive in the positive direction of v

The constants $A_{i} B_{i}$ may be found from the boundary conditions on the free surface [1] and on the contour of the wing

$$
\begin{equation*}
\varphi=0 \quad \text { for } \quad \rho=\rho_{2}, \quad \frac{\partial \varphi}{\partial n}=c \cos (n, x) \quad \text { for } \rho=1 \tag{1.2}
\end{equation*}
$$

The condition of impermeability may be written as [3]

$$
\begin{equation*}
\frac{\partial \varphi}{\partial \rho}=c \frac{\partial y}{\partial v}=\sum_{m=1}^{\infty}\left(\alpha_{m}^{(1)} \cos m v+\beta_{m}^{(1)} \sin m v\right) \quad \text { for } \rho=1 \tag{1.3}
\end{equation*}
$$

The parameters $\alpha_{i}{ }^{(1)}, \beta_{i}{ }^{(1)}$, are determined from the mapping function (0.1) .

In order to satisfy the condition on the free surface, we replace the first term in (1.1) by a Fourier series

$$
v=2 \sum_{1}^{\infty} \frac{(-1)^{m-1}}{n} \sin m v \quad(-\pi<v<\pi)
$$

Substituting (1.1) into the boundary condition (1.2), and comparing the coefficients of the same trigonometric functions, we find $A_{m} A_{-m} A^{\prime}$ B_{m}, B_{-m}.

For the velocity potential, we get

$$
\varphi=\frac{\Gamma 0}{2 \pi}+\frac{\Gamma}{\pi} \sum_{1}^{\infty}(-1)^{m} \frac{p_{2}^{m}}{m\left(1+p_{2}^{2 m}\right)}\left(\rho^{m}+\rho^{-m}\right) \sin m v+
$$

$$
\begin{equation*}
+\sum_{1}^{\infty} \frac{\alpha_{m}^{(1)}}{m\left(1+\rho_{2}^{2 m}\right)}\left(\rho^{m}-\rho^{2 m} \rho_{2}^{-m}\right) \cos m v+\sum_{1}^{\infty} \frac{\beta_{m}^{(1)}}{m\left(1+\rho_{2}^{2 m}\right)}\left(\rho^{m}-\rho_{2}^{2 m} \rho^{-m}\right) \sin m v \tag{1.5}
\end{equation*}
$$

We show that the velocities, corresponding to the chosen potential. vanish at infinity, i.e. $V_{x}^{\infty}=V_{y}^{\infty}=0$. We know that the poie of the function $\omega(\zeta)$ determines the point at infinity of the inverse function, thus

$$
\frac{d \zeta}{d z}=\frac{1}{\omega^{\prime}(\zeta)}=0 \quad \text { or } \quad \frac{\partial p}{\partial x}=\frac{\partial p}{\partial y}=\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}=0 \quad \text { for }|z| \rightarrow \infty
$$

From (1.4) and (1.5), it is, clear that for $v=0$ and $1 \leqslant \rho \leqslant \rho_{2}$, the derivatives $\partial \varphi / \partial \rho$ and $\partial \varphi / \partial v$ are bounded in absolute value. Consequently,

$$
\begin{equation*}
V_{x}^{\infty}=\frac{\partial \varphi}{\partial x}=\frac{\partial \varphi}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial \varphi}{\partial v} \frac{\partial v}{\partial x}=0, \quad V_{y}^{\infty}=\frac{\partial \varphi}{\partial y}=\frac{\partial \varphi}{\partial \rho} \frac{\partial \rho}{\partial y}+\frac{\partial \varphi}{\partial v} \frac{\partial v}{\partial y}=0 \tag{1.6}
\end{equation*}
$$

Knowing $\varphi(\rho, v)$, we find the conjugate stream function $\psi(\rho, v)$ and the expression for the complex potential

$$
\begin{gather*}
w(\zeta)=\varphi(\rho, v)+i \psi(\rho, v)=\frac{\Gamma}{32 \pi i} \ln \zeta+\sum_{1}^{\infty}\left(b_{m} \zeta^{m}+b_{-m} \zeta^{-m}\right)+i D \tag{1.7}\\
b_{m}=A_{m}-i B_{m}, \quad b_{-m}=A_{-m}+i B_{-m}
\end{gather*}
$$

The constant of integration D is determined from the condition

$$
\psi=0 \quad \text { for } x= \pm \infty \quad \text { or } \quad \psi\left(\rho_{2}, 0\right)=0
$$

2. To clarify the proposed method of solution, let us consider the motion of a wing of almost elliptical shape at large depths.

The function, giving the conformal mapping of a circular annulus onto the given region, has the form

$$
\begin{equation*}
z=\omega(\zeta)=\frac{i B}{1-x \zeta}+A-\frac{i B}{2}+(Q+i P) \sum_{1}^{\infty} x^{3 m} \zeta^{m}+(Q-i P) \sum_{1}^{\infty} x^{m} \zeta^{-m} \tag{2.1}
\end{equation*}
$$

where A, B, Q, P, k are real parameters, to be determined, in which $0<\kappa<1$.

Formula (1,2) is so chosen that $\operatorname{Im}[\omega(\zeta)]=y=0$ for $\rho=\kappa^{-1}$. Thus $\rho_{2}=\kappa^{-1}$.

On the contour of the wing $\zeta=\sigma=e^{i v}$, the mapping function may be represented as a Laurent series ($|k \sigma|<1$

$$
\begin{equation*}
\omega(\sigma)=i B \sum_{1}^{\infty} x^{m} \sigma^{m}+A+\frac{i B}{2}+(Q+i P) \sum_{1}^{\infty} x^{8 m} \sigma^{m}+(Q-i P) \sum_{1}^{\infty} x^{m} \sigma^{-m} \tag{2.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega(\sigma)=\frac{i B}{1-x \sigma}-\frac{i B}{2}+A+(Q+i P) \frac{x^{3} \sigma}{1-x^{3} \sigma}+(Q-i P) \frac{x}{\sigma-x} \tag{2.3}
\end{equation*}
$$

To calculate A, B, C and K, we assume that, approximately

$$
\begin{align*}
\omega(\sigma) & \approx \omega_{1}(\sigma)=A-\frac{i B}{2}+\frac{i B}{1-x \sigma}+(Q-i P) \frac{x}{\sigma-x}= \\
& =A+\frac{i B}{2}+i B \sum_{1}^{\infty} x^{m} \sigma^{m}+(Q-i P) \sum_{1}^{\infty} x^{m} \sigma^{-m} \tag{2.4}
\end{align*}
$$

The justification of this assumption will be carried out later. Isolating in (2.4) the real and imaginary parts, we obtain the approximate equations for the wing contour in parametric form

$$
\begin{gathered}
x \approx x_{1}=-(B+P) S_{2}+Q S_{1}+A \\
y \approx y_{1}=(B-P) S_{1}-Q S_{2}+\frac{B}{2} \\
S_{1}=\sum_{1}^{\infty} x^{m} \cos m v, \quad S_{2}=\sum_{1}^{\infty} x^{m} \sin m v
\end{gathered}
$$

We show that (2.5) is the equation of an ellipse in parametric form.

Me first note that

$$
\begin{equation*}
\left(S_{1}-\frac{x^{8}}{1-x^{2}}\right)^{2}+S_{2^{2}}=\left(\frac{x}{1-x^{8}}\right)^{2} \text { for }|x|<1 \tag{2.6}
\end{equation*}
$$

This is easily seen, if we consider the auxiliary function

$$
\begin{equation*}
z_{0}=x_{0}+i y_{0}=\frac{x \sigma}{1-x \sigma}=S_{1}+i S_{2} \text { for }|x \sigma|<1 \tag{2.7}
\end{equation*}
$$

It is known that the geometrical locus of the point (x_{0}, y_{0}) is a circle, whose equation coincides with (2.6). Solving the system (2.5) for S_{1} and S_{2}, and substituting the resulting expressions into (2.6), we obtain the equation of the ellipse

$$
\begin{align*}
& {\left[\frac{\left(x_{1}-A\right) Q-\left(y_{1}-B / 2\right)(B+P)}{Q^{2}+P^{2}-B^{2}}-\frac{x^{9}}{1-x^{2}}\right]^{2}+} \\
& +\left[\frac{\left(x_{1}-A\right)(B-P)-\left(y_{1}-B / 2\right) Q}{Q^{2}+P^{2}-B^{2}}\right]^{2}=\left(\frac{x}{1-x^{2}}\right)^{2} \tag{2.8}
\end{align*}
$$

Considering the ellipse to have an angle α with respect to the x-axis, and its center to have the coordinates ($0,-h$), we find

$$
\begin{equation*}
A=-\frac{Q x^{2}}{1-x^{2}}, \quad \frac{B}{2}-\frac{x^{2}(P-B)}{1-x^{2}}+h=0, \quad \tan 2 \alpha=\frac{Q}{P} \tag{2.9}
\end{equation*}
$$

For the equation of the ellipse in canonical form $x^{2} / a^{2}+y^{2} / b^{2}=1$, we have

$$
\begin{align*}
& \frac{x^{2}}{\left(1-x^{2}\right)^{2}} \frac{\left(Q^{2}+P^{2}-B^{2}\right)^{2}}{Q^{2}+P^{2}+B^{2}-2 \sqrt{Q^{2} B^{2}+P^{2} B^{2}}}=a^{8} \tag{2.10}\\
& \frac{x^{2}}{\left(1-x^{2}\right)^{2}} \frac{\left(Q^{2}+P^{2}-B^{2}\right)^{2}}{Q^{2}+P^{2}+B^{2}+2 \sqrt{Q^{2} B^{2}+P^{2} B^{2}}}=b^{2} \tag{2.11}
\end{align*}
$$

B, P, Q and k are found from (2.9), (2.10) and (2.11).
The signs of B, P and Q must be so chosen that $0<k<1$ holds. For elongated profiles $(a / b>5)$ and small $\alpha\left(|\alpha|<15^{\circ}\right)$

$$
\begin{gather*}
B=-\frac{1-x^{2}}{2 x}(a+b)=-2 h+x[a+b-(a-b) \cos 2 \alpha] \tag{2.12}\\
P=-\frac{1-x^{2}}{2 x}(a-b) \cos 2 a, \quad Q=-\frac{1-x^{2}}{2 x}(a-b) \sin 2 \alpha \tag{2.13}\\
x=\frac{-2 h+\sqrt{4 h^{2}+2\left(a^{2}-b^{2}\right) \cos 2 \alpha-(a+b)^{2}}}{2(a-b) \cos 2 \alpha-(a+b)} \tag{2.14}
\end{gather*}
$$

Here h is the distance of the center of the ellipse from the free surface, a and b are the semi-axes (Fig. 1). In the following table are
calculated the parameter k for some values of $h / 2 a, a / b$ and α.

	$\alpha=0$			$\alpha=15^{\circ}$		
$h / 2 a$	1.0	1.5	2.0	1.0	1.5	2.0
$a / b=5$	0.153	0.105	0.075	0.162	0.108	0.098
$a / b=10$	0.136	0.089	0.071	0.138	0.091	0.076
$a / b=15$	0.132	0.087	0.069	0.133	0.089	0.073

From (2.14), we see that as h increases, the parameter k decreases. Substituting A, B, P, Q and K in Expression (2.1), we find the desired mapping function $\omega(\zeta)$.

In conclusion, we verify the correctness of the assumption (2.4). From (2,3) and (2.4) we have

$$
\begin{equation*}
\omega(\sigma)=\omega_{1}(\sigma)+\Delta \omega(\sigma), \quad \Delta \omega(\sigma)=(Q+i P) \frac{x^{3} \sigma}{1-x^{3} \sigma} \tag{2.15}
\end{equation*}
$$

Here $z_{1}=\omega_{1}(\sigma)$ is the equation of the ellipse in complex form.
We estimate the absolute value of $\Delta \omega(\sigma)$; considering (2.13) and (2.15), we obtain the inequality

$$
|\Delta \omega(\sigma)|=\frac{x^{2}\left(1-x^{2}\right)}{2 \sqrt{1-2 x^{3} \cos v+x^{6}}}(a-b)<\frac{x^{3}}{2}(a-b)
$$

For $h / 2 a \geqslant 1$ and $5 \leqslant a / b \leqslant 15$, we have $|\Delta \omega(\sigma)|<0.12 b$ according to the table and (2.14), 1.e. the contour $x+i y=\omega(\sigma)$ is close to an elliptic contour $x_{1}+i y_{1}=\omega_{1}(\sigma)$.
3. We consider the problem of the motion of an almost elliptic wing at large depths. Separating in (2.2) the real and imaginary parts, we find
$y(1, v)=\frac{B}{2}+(B-P) \sum_{1}^{\infty} x^{m} \cos m v+P \sum_{1}^{\infty} x^{3 m} \cos m v-Q \sum_{1}^{\infty} x^{m}\left(1-x^{2 m}\right) \sin m v$
From Formula (1.3) we determine the parameters $\alpha_{m}^{(1)}$ and $\beta_{m}^{(1)}$

$$
\begin{equation*}
\alpha_{m}^{(1)}=c m Q x^{m}\left(x^{2 m}-1\right), \quad \beta_{m}^{(1)}=c m x^{m}\left(P-B-P x^{2 m}\right) \tag{3.2}
\end{equation*}
$$

Substituting (3.2) into (1.5), and remembering that $\rho_{2}=k^{-1}$, we get

$$
\begin{gather*}
\varphi=\frac{\Gamma v}{2 \pi}+c Q \sum_{1}^{\infty} \frac{x^{m}\left(x^{2 m}-1\right)}{x^{2 m}+1}\left(x^{2 m} \rho^{m}-\rho^{-m}\right) \cos m v+ \tag{3.3}\\
+\frac{\Gamma}{\pi} \sum_{1}^{\infty} \frac{(-1)^{m} x^{m}\left(p^{m}+p^{-m}\right)}{m\left(1+x^{2 m}\right)} \sin m v+c \sum_{1}^{\infty} \frac{x^{m}\left(P-B-P x^{2 m}\right)}{1+x^{2 m}}\left(x^{2 m} \rho^{m}-\rho^{-m}\right) \sin m v
\end{gather*}
$$

Determining $\varphi(\rho, v)$, we write the complei potential as (1.7).
In a similar manner, we may solve the problem of a wing moving near a rigid wall.

BIBLIOGRAPHY

1. Keldysh, M.V. and Lavrent'ev, M.A., O dvizhenii kryla pod poverkhnost' iu tiazheloi zhidkosti (On the motion of a wing under the surface of a heavy liquid). Tr. Konferentsii po volnovomu soprotivleniiu (Trans. of conference on vave drag). Izd-vo TSAGI, 1937.
2. Kochin, N.E., O konferentsii po volnovomu soprotivleniiu (On conference on wave drag). Sobr. soch. Vol. 2. Izd-vo Akad. Nauk SSSR, 1949.
3. Kurdiumova, N.V., O reshenii ploskoi zadachi gidrodinamiki dlia dvukhsviaznykh oblastei (On the solution of plane hydrodynamic problems for doubly-connected regions). PMM Vol. 25, No. 1, 1961.
